Mathematics formulas
All mathematics books formulas in
normal uses
v (α+в)²=
α²+2αв+в²
v (α+в)²=
(α-в)²+4αв
v (α-в)²=
α²-2αв+в²
v (α-в)²=
(α+в)²-4αв
v α² + в²= (α+в)²
- 2αв.
v α² + в²= (α-в)²
+ 2αв.
v α²-в² =(α + в)(α
- в)
v 2(α² + в²) = (α+
в)² + (α - в)²
v 4αв = (α + в)²
-(α-в)²
v αв =1. (α + в +
¢)² = α² + в² + ¢² + 2(αв + в¢ + ¢α)
v (α + в)³ = α³ +
3α²в + 3αв² + в³
v (α + в)³ = α³ +
в³ + 3αв(α + в)
v (α-в)³=α³-3α²в+3αв²-в³
v α³ + в³ = (α +
в) (α² -αв + в²)
v α³ + в³ = (α+
в)³ -3αв(α+ в)
v α³ -в³ = (α -в)
(α² + αв + в²)
v α³ -в³ = (α-в)³
+ 3αв(α-в)
v ѕιη0° =0
v ѕιη30° = 1/2
v ѕιη45° = 1/√2
v ѕιη60° = √3/2
v ѕιη90° = 1
v ¢σѕ ιѕ σρρσѕιтє
σƒ ѕιη
v тαη0° = 0
v тαη30° = 1/√3
v тαη45° = 1
v тαη60° = √3
v тαη90° = ∞
v ¢σт ιѕ σρρσѕιтє
σƒ тαη
v ѕє¢0° = 1
v ѕє¢30° = 2/√3
v ѕє¢45° = √2
v ѕє¢60° = 2
v ѕє¢90° = ∞
v ¢σѕє¢ ιѕ
σρρσѕιтє σƒ ѕє¢
v 2ѕιηα¢σѕв=ѕιη(α+в)+ѕιη(α-в)
v 2¢σѕαѕιηв=ѕιη(α+в)-ѕιη(α-в)
v 2¢σѕα¢σѕв=¢σѕ(α+в)+¢σѕ(α-в)
v 2ѕιηαѕιηв=¢σѕ(α-в)-¢σѕ(α+в)
v ѕιη(α+в)=ѕιηα
¢σѕв+ ¢σѕα ѕιηв.
v » ¢σѕ(α+в)=¢σѕα
¢σѕв - ѕιηα ѕιηв.
v »
ѕιη(α-в)=ѕιηα¢σѕв-¢σѕαѕιηв.
v »
¢σѕ(α-в)=¢σѕα¢σѕв+ѕιηαѕιηв.
v » тαη(α+в)=
(тαηα + тαηв)/ (1−тαηαтαηв)
v » тαη(α−в)=
(тαηα − тαηв) / (1+ тαηαтαηв)
v » ¢σт(α+в)=
(¢σтα¢σтв −1) / (¢σтα + ¢σтв)
v » ¢σт(α−в)=
(¢σтα¢σтв + 1) / (¢σтв− ¢σтα)
v » ѕιη(α+в)=ѕιηα
¢σѕв+ ¢σѕα ѕιηв.
v » ¢σѕ(α+в)=¢σѕα
¢σѕв +ѕιηα ѕιηв.
v »
ѕιη(α-в)=ѕιηα¢σѕв-¢σѕαѕιηв.
v »
¢σѕ(α-в)=¢σѕα¢σѕв+ѕιηαѕιηв.
v » тαη(α+в)=
(тαηα + тαηв)/ (1−тαηαтαηв)
v » тαη(α−в)=
(тαηα − тαηв) / (1+ тαηαтαηв)
v » ¢σт(α+в)=
(¢σтα¢σтв −1) / (¢σтα + ¢σтв)
v » ¢σт(α−в)=
(¢σтα¢σтв + 1) / (¢σтв− ¢σтα)
v α/ѕιηα = в/ѕιηв
= ¢/ѕιη¢ = 2я
v » α = в ¢σѕ¢ + ¢
¢σѕв
v » в = α ¢σѕ¢ + ¢
¢σѕα
v » ¢ = α ¢σѕв + в
¢σѕα
v » ¢σѕα = (в² +
¢²− α²) / 2в¢
v » ¢σѕв = (¢² +
α²− в²) / 2¢α
v » ¢σѕ¢ = (α² +
в²− ¢²) / 2¢α
v » Δ = αв¢/4я
v » ѕιηΘ = 0
тнєη,Θ = ηΠ
v » ѕιηΘ = 1
тнєη,Θ = (4η + 1)Π/2
v » ѕιηΘ =−1
тнєη,Θ = (4η− 1)Π/2
v » ѕιηΘ = ѕιηα
тнєη,Θ = ηΠ (−1)^ηα
v ѕιη2α =
2ѕιηα¢σѕα
v ¢σѕ2α = ¢σѕ²α −
ѕιη²α
v ¢σѕ2α = 2¢σѕ²α −
1
v ¢σѕ2α = 1 −
ѕιη²α
v 2ѕιη²α = 1 −
¢σѕ2α
v 1 + ѕιη2α =
(ѕιηα + ¢σѕα)²
v 1 − ѕιη2α =
(ѕιηα − ¢σѕα)²
v тαη2α = 2тαηα /
(1 − тαη²α)
v ѕιη2α = 2тαηα /
(1 + тαη²α)
v ¢σѕ2α = (1 −
тαη²α) / (1 + тαη²α)
v 4ѕιη³α = 3ѕιηα −
ѕιη3α
v 4¢σѕ³α = 3¢σѕα +
¢σѕ3α
v » ѕιη²Θ+¢σѕ²Θ=1
v » ѕє¢²Θ-тαη²Θ=1
v »
¢σѕє¢²Θ-¢σт²Θ=1
v » ѕιηΘ=1/¢σѕє¢Θ
v » ¢σѕє¢Θ=1/ѕιηΘ
v » ¢σѕΘ=1/ѕє¢Θ
v » ѕє¢Θ=1/¢σѕΘ
v » тαηΘ=1/¢σтΘ
v » ¢σтΘ=1/тαηΘ
v » тαηΘ=ѕιηΘ/¢σѕΘ
0 Comments