Ad Code

Mathematics all books formulas.

Mathematics formulas

All mathematics books formulas in normal uses

math

 

v (α+в)²= α²+2αв+в²

v (α+в)²= (α-в)²+4αв

v (α-в)²= α²-2αв+в²

v (α-в)²= (α+в)²-4αв

v α² + в²= (α+в)² - 2αв.

v α² + в²= (α-в)² + 2αв.

v α²-в² =(α + в)(α - в)

v 2(α² + в²) = (α+ в)² + (α - в)²

v 4αв = (α + в)² -(α-в)²

v αв =1. (α + в + ¢)² = α² + в² + ¢² + 2(αв + в¢ + ¢α)

v (α + в)³ = α³ + 3α²в + 3αв² + в³

v (α + в)³ = α³ + в³ + 3αв(α + в)

v (α-в)³=α³-3α²в+3αв²-в³

v α³ + в³ = (α + в) (α² -αв + в²)

v α³ + в³ = (α+ в)³ -3αв(α+ в)

v α³ -в³ = (α -в) (α² + αв + в²)

v α³ -в³ = (α-в)³ + 3αв(α-в)

v ѕιη0° =0

v ѕιη30° = 1/2

v ѕιη45° = 1/√2

v ѕιη60° = √3/2

v ѕιη90° = 1

v ¢σѕ ιѕ σρρσѕιтє σƒ ѕιη

v тαη0° = 0

v тαη30° = 1/√3

v тαη45° = 1

v тαη60° = √3

v тαη90° = ∞

v ¢σт ιѕ σρρσѕιтє σƒ тαη

v ѕє¢0° = 1

v ѕє¢30° = 2/√3

v ѕє¢45° = √2

v ѕє¢60° = 2

v ѕє¢90° = ∞

v ¢σѕє¢ ιѕ σρρσѕιтє σƒ ѕє¢

v 2ѕιηα¢σѕв=ѕιη(α+в)+ѕιη(α-в)

v 2¢σѕαѕιηв=ѕιη(α+в)-ѕιη(α-в)

v 2¢σѕα¢σѕв=¢σѕ(α+в)+¢σѕ(α-в)

v 2ѕιηαѕιηв=¢σѕ(α-в)-¢σѕ(α+в)

v ѕιη(α+в)=ѕιηα ¢σѕв+ ¢σѕα ѕιηв.

v » ¢σѕ(α+в)=¢σѕα ¢σѕв - ѕιηα ѕιηв.

v » ѕιη(α-в)=ѕιηα¢σѕв-¢σѕαѕιηв.

v » ¢σѕ(α-в)=¢σѕα¢σѕв+ѕιηαѕιηв.

v » тαη(α+в)= (тαηα + тαηв)/ (1−тαηαтαηв)

v » тαη(α−в)= (тαηα − тαηв) / (1+ тαηαтαηв)

v » ¢σт(α+в)= (¢σтα¢σтв −1) / (¢σтα + ¢σтв)

v » ¢σт(α−в)= (¢σтα¢σтв + 1) / (¢σтв− ¢σтα)

v » ѕιη(α+в)=ѕιηα ¢σѕв+ ¢σѕα ѕιηв.

v » ¢σѕ(α+в)=¢σѕα ¢σѕв +ѕιηα ѕιηв.

v » ѕιη(α-в)=ѕιηα¢σѕв-¢σѕαѕιηв.

v » ¢σѕ(α-в)=¢σѕα¢σѕв+ѕιηαѕιηв.

v » тαη(α+в)= (тαηα + тαηв)/ (1−тαηαтαηв)

v » тαη(α−в)= (тαηα − тαηв) / (1+ тαηαтαηв)

v » ¢σт(α+в)= (¢σтα¢σтв −1) / (¢σтα + ¢σтв)

v » ¢σт(α−в)= (¢σтα¢σтв + 1) / (¢σтв− ¢σтα)

v α/ѕιηα = в/ѕιηв = ¢/ѕιη¢ = 2я

v » α = в ¢σѕ¢ + ¢ ¢σѕв

v » в = α ¢σѕ¢ + ¢ ¢σѕα

v » ¢ = α ¢σѕв + в ¢σѕα

v » ¢σѕα = (в² + ¢²− α²) / 2в¢

v » ¢σѕв = (¢² + α²− в²) / 2¢α

v » ¢σѕ¢ = (α² + в²− ¢²) / 2¢α

v » Δ = αв¢/4я

v » ѕιηΘ = 0 тнєη,Θ = ηΠ

v » ѕιηΘ = 1 тнєη,Θ = (4η + 1)Π/2

v » ѕιηΘ =−1 тнєη,Θ = (4η− 1)Π/2

v » ѕιηΘ = ѕιηα тнєη,Θ = ηΠ (−1)^ηα

v ѕιη2α = 2ѕιηα¢σѕα

v ¢σѕ2α = ¢σѕ²α − ѕιη²α

v ¢σѕ2α = 2¢σѕ²α − 1

v ¢σѕ2α = 1 − ѕιη²α

v 2ѕιη²α = 1 − ¢σѕ2α

v 1 + ѕιη2α = (ѕιηα + ¢σѕα)²

v 1 − ѕιη2α = (ѕιηα − ¢σѕα)²

v тαη2α = 2тαηα / (1 − тαη²α)

v ѕιη2α = 2тαηα / (1 + тαη²α)

v ¢σѕ2α = (1 − тαη²α) / (1 + тαη²α)

v 4ѕιη³α = 3ѕιηα − ѕιη3α

v 4¢σѕ³α = 3¢σѕα + ¢σѕ3α

v » ѕιη²Θ+¢σѕ²Θ=1

v » ѕє¢²Θ-тαη²Θ=1

v » ¢σѕє¢²Θ-¢σт²Θ=1

v » ѕιηΘ=1/¢σѕє¢Θ

v » ¢σѕє¢Θ=1/ѕιηΘ

v » ¢σѕΘ=1/ѕє¢Θ

v » ѕє¢Θ=1/¢σѕΘ

v » тαηΘ=1/¢σтΘ

v » ¢σтΘ=1/тαηΘ

v » тαηΘ=ѕιηΘ/¢σѕΘ 

Post a Comment

0 Comments